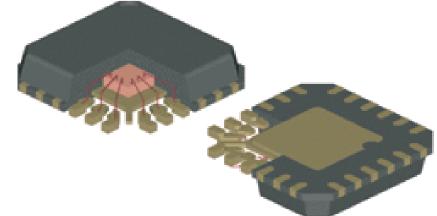

The Effect of Coating and Potting on the Reliability of QFN Devices

Greg Caswell, Cheryl Tulkoff and Dr. Nathan Blattau

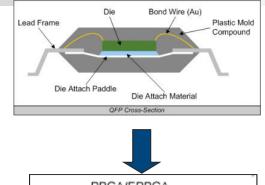
QFN: What is it?

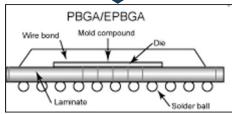

- Quad Flat Pack No Lead or Quad Flat Non-Leaded
 - 'The poor man's ball grid array'
 - Also known as
 - Leadframe Chip Scale Package (LF-CSP)
 - MicroLeadFrame (MLF)
 - Others (MLP, LPCC, QLP, HVQFN, etc.)

 Overmolded leadframe with bond pads exposed on the bottom and arranged along

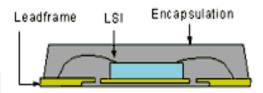
the periphery of the package

- Developed in the early to mid-1990's by Motorola, Toshiba, Amkor, etc.
- Standardized by JEDEC/EIAJ in late-1990's
- Fastest growing package type




Quad Flat No-Leads (QFN)

- Elimination of leads
 - Provides lower resistance
 - Lower inductance
 - Higher performance
 - Higher package densities
- Tradeoffs
 - Increased power density
 - Manufacturability
 - More susceptible to thermal mechanical fatigue


Cycles to failure -40 to 125C

QFP: >10,000

QFN: 1,000 to 3,000

DfR Solutions

Advantages: Thermal Performance

- More direct thermal path with larger area
 - ∘ Die → Die Attach → Thermal Pad → Solder → Board Bond Pad
- θJa for the QFN is about half of a leaded counterpart (as per JESD-51)

• Allows for 2X increase in power dissipation

Package Type	Body Size (mm)	Leads	Height (mm)	Max Die Size	PCB Area	θJa
QFN	7x7	48	1.00 max	203 x 203 mils	49 mm ²	27
TQFP	7x7	48	1.20 max	190 x 190 mils	81 mm ²	55
QFN	5x7	38	1.00 max	124 x 202 mils	35 mm ²	34
TSSOP	4.4 x 9.7	38	1.10 max	108 x 207 mils	62 mm²	73
QFN	5 x 5	16	1.00 max	124 x 124 mils	25 mm ²	37
QSOP	3.9 x 4.9	16	1.75 max	86 x 120 mils	31 mm ²	112

Advantages: Inductance

Popular for

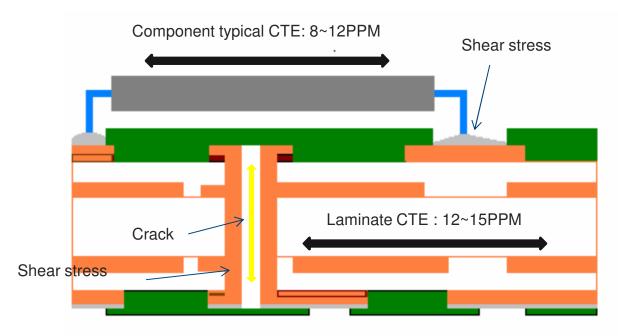
RF Designs

- At higher operating frequencies, inductance of the gold wire and long lead-frame traces will affect performance
- Inductance of QFN is half its leaded counterpart because it eliminates gullwing leads and shortens wire lengths

	Inductance (nH)			
Package	QFN 7 mm, 48 Lead	TQFP 7 mm, 48 Lead		
Die size	4.5 x 4.5 mm	4.25 x 4.25 mm		
Center lead	0.067	0.871		
Center wire	0.867	0.837		
Center total (lead + wire)	0.934	1.708		
Corner lead	0.085	1.010		
Corner wire	1.081	0.964		
Corner total (lead + wire)	1.166	1.974		

http://ap.pennnet.com/display_article/153955/36/ARTCL/none/none/1/The-back-end-process:-Step-9-QFN-Singulation/

Disadvantage: Thermal Mechanical Fatigue (Solder)


- Design change: More silicon, less plastic
- Increases mismatch in coefficient of thermal expansion (CTE)

Does the increased susceptibility of QFN devices make them more sensitive to conformal coating and potting effects? $\begin{array}{c} 1000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 0.30 \\ 0.40 \\ 0.50 \\ 0.60 \\ 0.60 \\ 0.70 \\ 0.80 \\$

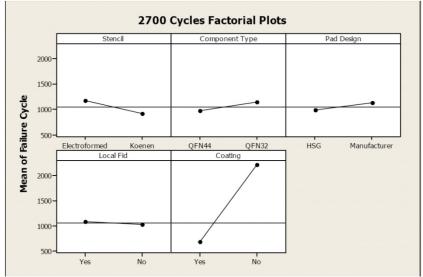
DfR Solutions

BOARD LEVEL ASSEMBLY AND RELIABILITY CONSIDERATIONS FOR QFN TYPE PACKAGES, Ahmer Syed and WonJoon Kang, Amkor Technology.

CTE Mismatch

Copper CTE : 17~18PPM/

Laminate typical z-axis CTE: Before Tg: 40~60PPM After Tg: 280~350PPM


Rules of Thumb

- The use of underfills, potting compounds and thick conformal coatings can greatly influence the failure behavior under thermal cycling
 - Any time a material goes through its glass transition temperature problems tend to occur
 - Conformal coating should not bridge between the PCB and the component
 - Underfills designed for enhancing shock robustness do not tend to enhance thermal cycling robustness
 - Potting materials can cause PCB warpage and tensile stresses on electronic packages that greatly reduce time to failure

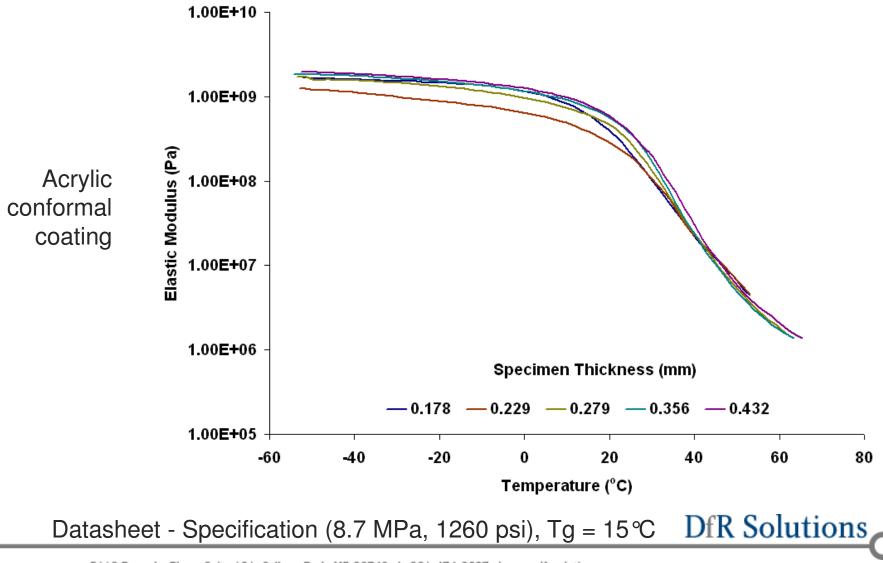
Thermal Cycling: Conformal Coating

- Care must be taken when using conformal coating over QFN
 - Coating can infiltrate under the QFN
 - Small standoff height allows coating to cause lift
- Hamilton Sundstrand found a significant reduction in time to failure (-55 / 125C)
 - Uncoated: 2000 to 2500 cycles
 - Coated: 300 to 700 cycles
- Also driven by solder joint sensitivity to tensile stresses
 - Damage evolution is far higher than for shear stresses

Wrightson, SMTA Pan Pac 2007

Conformal Coating Properties (Glass Transition Temperature)

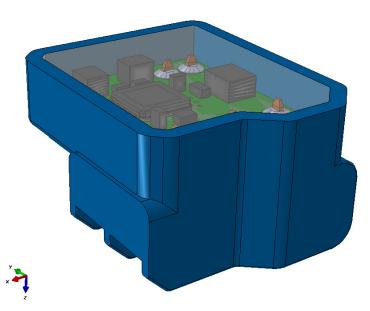
- Why did conformal coating effect thermal cycling performance?
- Verification and determination of mechanical properties
 - Elastic Modulus as a function of temperature
 - Glass Transition
 Temperature
 - Coefficient of Thermal Expansion


	· · · · · ·
Continuous Use Temp. Range °C	-65 +125
Thermal Shock Test ⁷	Passes
Flammability ⁸ (self extinguishing)	Yes
TCE in/in/°C ⁹	5.5 x 10 ⁻⁶
Young's Modulus ¹⁰ psi	1260
Tg °C ¹¹	15
Dielectric Constant ¹²	2.5
Dissipation Factor ¹³	.01
Dielectric Withstand ¹⁴ (volts)	>1,500
Insulation Resistance ¹⁵ (teraohms)	800
Moisture Resistance ¹⁶ (gigaohms)	60
	Thermal Shock Test ⁷ Flammability ⁸ (self extinguishing) TCE in/in/°C ⁹ Young's Modulus ¹⁰ psi Tg °C ¹¹ Dielectric Constant ¹² Dissipation Factor ¹³ Dielectric Withstand ¹⁴ (volts) Insulation Resistance ¹⁵ (teraohms)

Young's Modulus Datasheet 1260 psi (8.7 MPa)

Coefficient of thermal Expansion Datasheet 55 ppm/℃

Elastic Modulus – DMA - Tensile

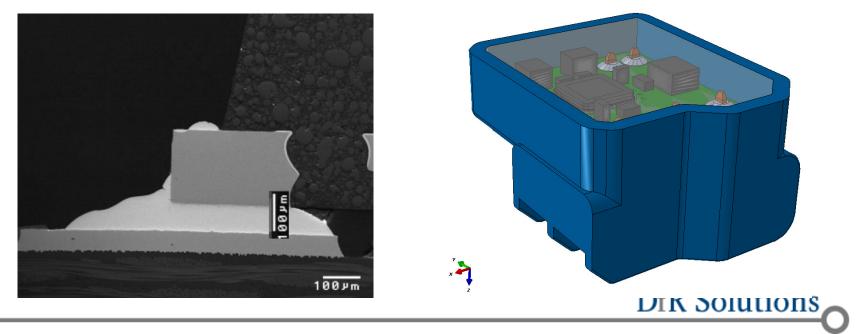


Coefficient of Thermal Expansion - TMA

1.876 1.875 1.870 1.865 Lope Lostion (mm) 1.860 Expansion Coefficient = 339.0806 e-06 /°C 1.850 Expansion Coefficient = 169.6798 e-06 /°C 1.845 1.840 -50.55 -40 -30 -20 -10 0 10 20 30 Temperature (°C) Below Tg CTE - 170 ppm/°C **Glass Transition Temperature** Above Tg : CTE – 340 ppm/°C Tg ≈ 5 to 15 °C DfR Solutions

Acrylic conformal coating

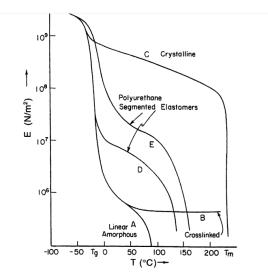
Potting



- o Ideally the CTE of the potting should be as close to the CCA as possible
 - $_{\circ}$ Usually in the 20 to 30 ppm/ $^{\circ}$ C
 - The larger the CTE, the more compliant the potting must be to limit the stresses imparted to the CCA
 - Potting should the generate hydrostatic pressure (equal on all sides) of the circuit card
 - This prevents warping of the CCA as the potting expands
 - Excessive warping will greatly reduce time to failure
 - May cause overstress failures.
 - This may require modification to the housing
 - Housing may need to be relatively stiff

Rigid Housing with Free Surface

- QFN failures occurring very rapidly during temperature cycling with urethane based potting material
- All units were failed at the 100 cycle inspection (-40 to 105C)
- Good quality joints with sufficient solder thickness


Material Properties

Potting Compound

Isotropic Material

 $CTE_{x,y} = 120 \text{ ppm}$

Significant increase in modulus or stiffness below with high CTE

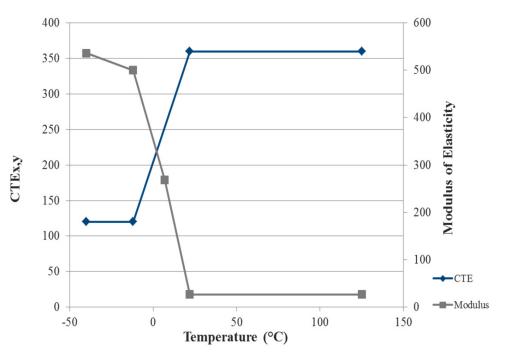
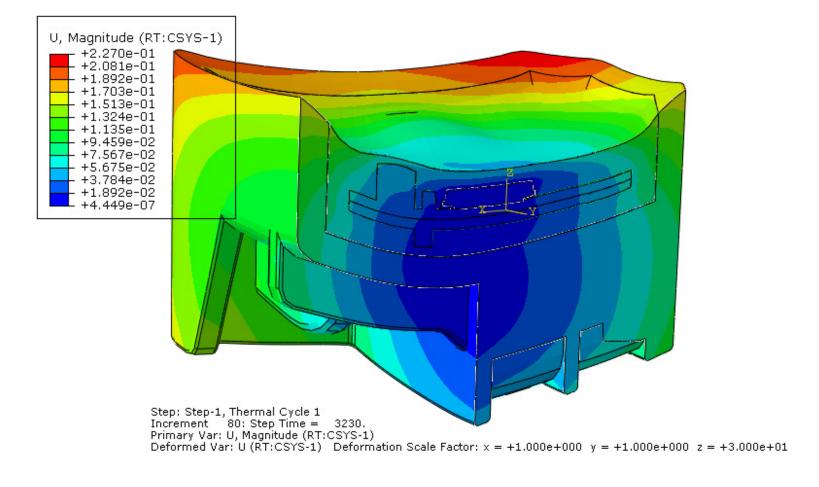
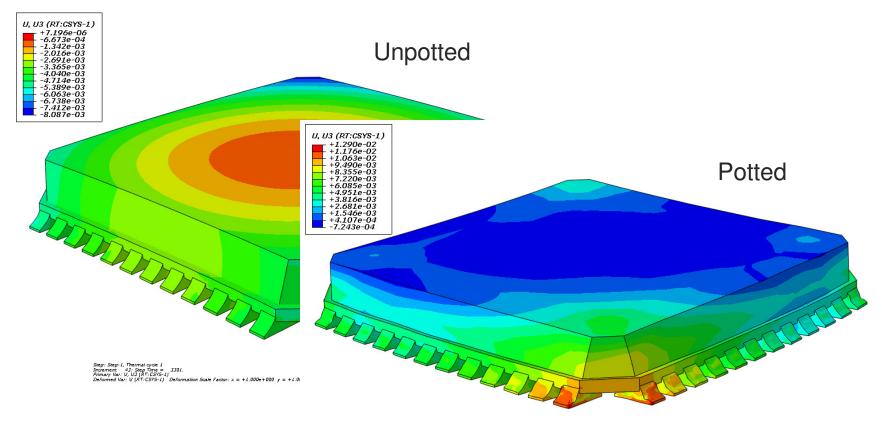
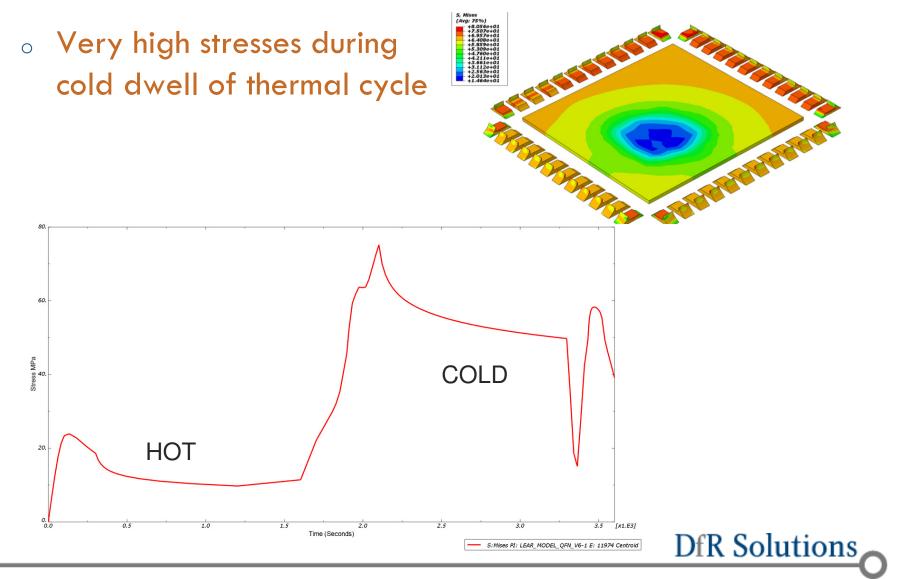



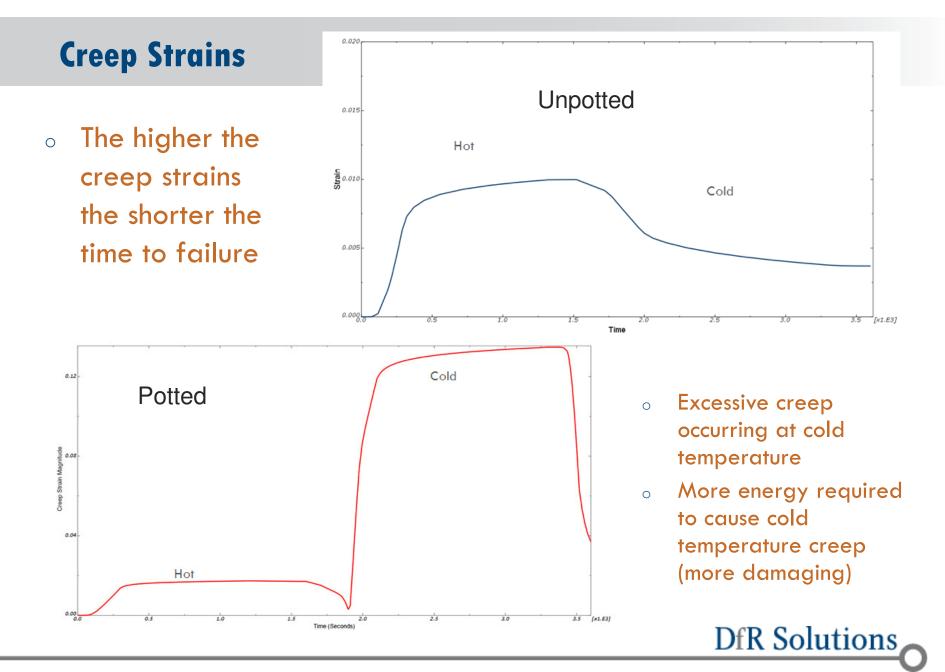
FIGURE 22 Storage modulus v temperature curves for (A) linear amorphous polymer, (B) crosslinked polymer, (C) semicrystalline polymer, (D) MDJ/BDJ/PTMA segmented polyurethane (32% MDI by weight), (E) MDJ/BD/PTMA segmented polyurethane (34% MDI by weight), From Cooper SL, and Tobolsky A.V.J. Appl. Polym. Sci., 10:1837, Copyright 1966. Reprinted with permission by John Wiley & Sons.



PCB Warpage due to Potting Shrinkage

QFN Warpage




Order of magnitude higher deformation and deformation concentrated over corner solder joints

Step: Step:1, Thermal Cycle 1 Incoment 7: Sissep Time = 12216. Primary Var: U, U3 (RT:CSY-1) Deformation Scale Factor: x = +1.000e+000 y = +1.000e+000 z = +2.000e+01 Deformed Var: U (RT:CSY-1) Deformation Scale Factor: x = +1.000e+000 y = +1.000e+000 z = +2.000e+01

Solder Stresses

Conclusions

- The lack of a compliant lead structure makes QFN devices more susceptible to PCB warpage related failures
- Mechanical properties of the potting material
 - Glass transition temperature (Tg)
 - Modulus should be specified above and below the Tg
 - CTE should be specified above and below the Tg
- The design of the housing
 - May provide a surface to which the potting material can pull against when shrinking causing PCB warpage
 - Should be designed to provide as close to a hydrostatic pressure as possible (equal pressure on all sides)

